Acta Crystallographica Section E
 Structure Reports
 Online
 ISSN 1600-5368
 Dipotassium trisodium triphosphate, $\mathrm{K}_{\mathbf{2}} \mathrm{Na}_{3} \mathrm{P}_{3} \mathrm{O}_{10}$

Meryem Moutataouia, ${ }^{\text {a }}$ Mohammed Lamire, ${ }^{\text {a* }}$ Mohamed Saadi ${ }^{\text {b }}$ and Lahcen EI Ammari ${ }^{\text {b }}$

${ }^{\text {a Laboratoire de Physico-Chimie des Matériaux Inorganiques, Faculté des Sciences }}$ Aïn Chock, Casablanca, Morocco, and ${ }^{\mathbf{b}}$ Laboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Batouta, BP 1014, Rabat, Morocco
Correspondence e-mail: m_lamire@yahoo.fr

Received 3 April 2012; accepted 4 April 2012

Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{P}-\mathrm{O})=0.001 \AA$; R factor $=0.032 ; w R$ factor $=0.080 ;$ data-to-parameter ratio $=33.3$.

The structure of the title compound, $\mathrm{K}_{2} \mathrm{Na}_{3} \mathrm{P}_{3} \mathrm{O}_{10}$, is characterized by open chains of three PO_{4} tetrahedra linked by single oxygen bridges. The $\mathrm{P}_{3} \mathrm{O}_{10}$ groups have crystallographic twofold symmetry, with the central P atom being located on the twofold rotation axis. One of the sodium ions lies on a centre of inversion, whereas all the remaining atoms are in general positions. The structure is isotypic with that of the high-temperature form of $\mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{10}$ phase I.

Related literature

For compounds with related structures, see: Cruickshank (1964); Davies \& Corbridge (1958); Dyroff (1965), Wiench et al. (1982); Dymon \& King (1951); Corbridge (1960).

Experimental

Crystal data

```
K}\mp@subsup{2}{2}{}\mp@subsup{\textrm{Na}}{3}{}\mp@subsup{\textrm{P}}{3}{}\mp@subsup{\textrm{O}}{10}{
Mr}=400.0
Monoclinic, C2/c
a=9.8866 (4) A
\[
\begin{aligned}
& b=5.6332(2) \AA \\
& c=18.6577(8) \AA \\
& \beta=96.199(3)^{\circ} \\
& V=1033.03(7) \AA^{3}
\end{aligned}
\]
```


$Z=4$

Mo $K \alpha$ radiation
$\mu=1.55 \mathrm{~mm}^{-1}$

Data collection
Bruker APEXII CCD detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1999)
$T_{\text {min }}=0.511, T_{\text {max }}=0.638$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
$w R\left(F^{2}\right)=0.080$
$S=1.08$
2830 reflections
$T=296 \mathrm{~K}$
$0.19 \times 0.14 \times 0.10 \mathrm{~mm}$

12463 measured reflections 2830 independent reflections 2136 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.032$

85 parameters
$\Delta \rho_{\text {max }}=0.63 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.97 \mathrm{e}^{-3}$

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia,1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5872).

References

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Corbridge, D. E. C. (1960). Acta Cryst. 13, 263-269.
Cruickshank, D. W. J. (1964). Acta Cryst. 17, 674-675.
Davies, D. R. \& Corbridge, D. E. C. (1958). Acta Cryst. 11, 315-319.
Dymon, J. J. \& King, A. J. (1951). Acta Cryst. 4, 378-379.
Dyroff, D. R. (1965). PhD thesis, California Institute of Technology, Pasadena, California, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Wiench, D. M., Jansen, M. \& Hoppe, R. (1982). Z. Anorg. Allg. Chem. 488, 8086.

supplementary materials

Acta Cryst. (2012). E68, i31 [doi:10.1107/S1600536812014894]

Dipotassium trisodium triphosphate, $\mathrm{K}_{2} \mathrm{Na}_{3} \mathbf{P}_{\mathbf{3}} \mathrm{O}_{\mathbf{1 0}}$

Meryem Moutataouia, Mohammed Lamire, Mohamed Saadi and Lahcen El Ammari

Comment

The present triphosphate was obtained by chance, during the preparation of a mixed pyrophosphate. A bibliographic study of alkali triphosphates like $M_{5} \mathrm{P}_{3} 0_{10}$ shows that there are few known structures. Thus, in the case of sodium triphosphate, the crystal structures of two anhydrous forms noted Phase I and II were determined by Cruickshank (1964) and Davies \& Corbridge (1958) and that of the hexahydrate was performed by Dyroff (1965) and re-examined by Wiench et al. (1982).
The structure of dipotassium trisodium triphosphate consists of open chains of three PO_{4} tetrahedra linked by single oxygen bridges. The values of $\mathrm{P}-\mathrm{P}(2.883 \AA)$ distances and $\mathrm{P}-\mathrm{O}-\mathrm{P}\left(125.25^{\circ}\right)$ angles are within the limits generally observed in condensed phosphate crystal chemistry. The internal symmetry of the $P_{3} 0_{10}$ groups has a twofold symmetry, with the central phosphorus P2 atom being located on a binary axis. Moreover, the Na 2 sodium ion lies on the symmetry center whereas all the remaining atoms are in general positions of the $C 2 / c$ space group. The Na 2 sodium atom located at Wyckoff position $4 c(1 / 4,3 / 4,1 / 2)$ could be surrounded by a roughly octahedral arrangement of six oxygen atoms and the other sodium and potassium ($\mathrm{Na} 1, \mathrm{~K} 1$) atoms are coordinated to six and eight oxygen atoms respectively. The $\mathrm{Na}_{2} \mathrm{O}_{6}$ octahedra, $\mathrm{Na}^{2} \mathrm{O}_{6}$ and ${\mathrm{K} 1 \mathrm{O}_{8}}^{0}$ polyhedra are connected through the apices to triphosphate groups and form a threedimensional host lattice (Fig.1). The resulting 3-D framework presents intersecting tunnels running along the [010] and [110] directions, where the six-coordinated Na^{+}cations are located (Fig.2). The structure of this compound is isotype to that of the high-temperature form of $\mathrm{Na}_{5} \mathrm{P}_{3} 0_{10}$ phase I (Dymon and King, 1951 and Corbridge, 1960).

Experimental

The present triphosphate is obtained by chance, during the preparation of a mixture of pyrophosphate. Indeed, the powder phase $\mathrm{NaKNiP}_{2} \mathrm{O}_{7}$ synthesized by wet process is introduced into a platinum crucible, and then gradually heated to a temperature above its melting point $(1173 \mathrm{~K})$ for 2 h , followed by slow cooling of the order of 6 K per hour up to 673 K . Then the furnace is shuts down and the cooling is continued until room temperature. Small colourless single crystals of $\mathrm{K}_{2} \mathrm{Na}_{3} \mathrm{P}_{3} \mathrm{O}_{10}$ were isolated from the mixtures of phases.

Refinement

The highest peak and the deepest hole in the final Fourier map are at $0.63 \AA$ and $0.58 \AA$, respectively, from K1.

Computing details

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia,1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

supplementary materials

Figure 1
Plot of $\mathrm{K}_{2} \mathrm{Na}_{3} \mathrm{P}_{3} \mathrm{O}_{10}$ crystal structure showing polyhedra linkage. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes:(i) $-x+1 / 2,-y+1 / 2,-z+1$; (ii) $-x,-y,-z+1$; (iii) $-x,-y+1,-z+1$; (iv) $x, y+1, z$; (v) $-x, y,-z+$ $1 / 2$; (vi) $x-1 / 2, y+1 / 2, z$; (vii) $-x+1 / 2, y+1 / 2,-z+1 / 2$; (viii) $x+1 / 2, y-1 / 2, z$; (ix) $x, y-1, z ;(x)-x+1 / 2,-y-1 / 2,-z+$ 1.

Figure 2

Projection view of the $\mathrm{K}_{2} \mathrm{Na}_{3} \mathrm{P}_{3} \mathrm{O}_{10}$ framework structure showing tunnel running along b direction where the Na atoms are located.

Dipotassium trisodium triphosphate

Crystal data

$\mathrm{K}_{2} \mathrm{Na}_{3} \mathrm{P}_{3} \mathrm{O}_{10}$
$M_{r}=400.08$
Monoclinic, C2/c
Hall symbol: -c 2yc
$a=9.8866$ (4) \AA
$b=5.6332(2) \AA$
$c=18.6577(8) \AA$
$\beta=96.199(3)^{\circ}$
$V=1033.03(7) \AA^{3}$
$Z=4$

Data collection

Bruker APEXII CCD detector diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
ω and φ scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
$T_{\text {min }}=0.511, T_{\text {max }}=0.638$
$F(000)=784$
$D_{\mathrm{x}}=2.572 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2830 reflections
$\theta=4.2-38.3^{\circ}$
$\mu=1.55 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Block, colourless
$0.19 \times 0.14 \times 0.10 \mathrm{~mm}$

12463 measured reflections
2830 independent reflections
2136 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.032$
$\theta_{\text {max }}=38.3^{\circ}, \theta_{\text {min }}=4.2^{\circ}$
$h=-17 \rightarrow 17$
$k=-8 \rightarrow 9$
$l=-32 \rightarrow 32$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032$
Secondary atom site location: difference Fourier
map
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0334 P)^{2}+0.7541 P\right]$
where $P=\left(F_{o}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$w R\left(F^{2}\right)=0.080$
$S=1.08$
2830 reflections
85 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.63 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.97 \mathrm{e} \AA^{-3}$
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.0011 (3)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F^{2} against all reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
K1	$0.09445(3)$	$0.27218(6)$	$0.57736(2)$	$0.02014(8)$
P1	$0.06781(3)$	$0.22944(6)$	$0.398705(18)$	$0.00976(7)$
P2	0.0000	$0.09573(9)$	0.2500	$0.01288(10)$
Na 1	$0.21820(7)$	$-0.30829(11)$	$0.32759(3)$	$0.01917(13)$
Na 2	0.2500	-0.2500	0.5000	$0.01344(15)$
O1	$-0.07276(11)$	$0.22433(19)$	$0.42318(6)$	$0.0184(2)$
O2	$0.15106(10)$	$0.44080(18)$	$0.42676(5)$	$0.01569(19)$
O3	$0.14234(10)$	$-0.00428(18)$	$0.40638(6)$	$0.01571(19)$
O4	$0.04508(11)$	$0.28577(18)$	$0.31142(5)$	$0.01663(19)$
O5	$-0.12023(12)$	$-0.0419(2)$	$0.26927(6)$	$0.0231(2)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
K1	$0.01413(13)$	$0.01460(13)$	$0.03200(18)$	$0.00043(10)$	$0.00389(11)$	$0.00128(11)$
P1	$0.00897(13)$	$0.00981(14)$	$0.01046(14)$	$0.00010(10)$	$0.00091(10)$	$-0.00060(10)$
P2	$0.0142(2)$	$0.0135(2)$	$0.0108(2)$	0.000	$0.00129(15)$	0.000
Na1	$0.0199(3)$	$0.0173(3)$	$0.0212(3)$	$0.0060(2)$	$0.0062(2)$	$0.0047(2)$
Na2	$0.0132(3)$	$0.0131(4)$	$0.0139(3)$	$-0.0003(3)$	$0.0008(3)$	$-0.0006(3)$
O1	$0.0136(4)$	$0.0187(5)$	$0.0244(5)$	$-0.0006(4)$	$0.0090(4)$	$-0.0020(4)$
O2	$0.0151(4)$	$0.0140(4)$	$0.0174(4)$	$-0.0028(3)$	$-0.0007(3)$	$-0.0041(3)$
O3	$0.0162(4)$	$0.0126(4)$	$0.0180(4)$	$0.0044(3)$	$0.0003(3)$	$0.0015(3)$
O4	$0.0239(5)$	$0.0159(4)$	$0.0095(4)$	$-0.0021(4)$	$-0.0010(3)$	$0.0012(3)$
O5	$0.0238(5)$	$0.0246(5)$	$0.0216(5)$	$-0.0107(4)$	$0.0056(4)$	$0.0005(4)$

Geometric parameters (A, ${ }^{\circ}$)

$\mathrm{K} 1-\mathrm{O} 2^{\text {i }}$	2.7960 (11)	P2-O4	1.5961 (11)
$\mathrm{K} 1-\mathrm{O} 1^{\text {ii }}$	2.8051 (11)	P2-O4 $4^{\text {iv }}$	1.5961 (11)
$\mathrm{K} 1-\mathrm{O} 3{ }^{\text {ii }}$	2.8291 (11)	$\mathrm{Na} 1-\mathrm{O} 5^{*}$	2.4172 (14)
$\mathrm{K} 1-\mathrm{O} 1{ }^{\text {iii }}$	2.8443 (11)	$\mathrm{Na} 1-\mathrm{O} 3$	2.4278 (12)
$\mathrm{K} 1-\mathrm{O}^{\text {i }}$	2.8987 (11)	$\mathrm{Na} 1-\mathrm{OF}^{\text {iv }}$	2.4655 (13)
$\mathrm{K} 1-\mathrm{O} 2{ }^{\text {iii }}$	2.9106 (11)	$\mathrm{Na}-\mathrm{O}^{\text {vi }}$	2.4753 (12)
K1-O2	3.0740 (11)	$\mathrm{Na1-O1}{ }^{\text {v }}$	2.5864 (13)
$\mathrm{K} 1-\mathrm{O} 5^{\text {ii }}$	3.1272 (12)	Na - $\mathrm{O}^{\text {vi }}$	2.8527 (13)
P1-03	1.5080 (10)	$\mathrm{Na} 2-\mathrm{O} 2^{\text {vi }}$	2.3599 (10)
P1-02	1.5086 (10)	$\mathrm{Na} 2-\mathrm{O} 2{ }^{\text {i }}$	2.3599 (10)
P1-01	1.5092 (11)	$\mathrm{Na} 2-\mathrm{Ol}^{\text {ii }}$	2.3850 (10)
P1-04	1.6506 (10)	$\mathrm{Na} 2-\mathrm{O} 1^{v}$	2.3850 (10)
P2-05	1.4951 (11)	Na2-O3	2.3871 (10)
$\mathrm{P} 2-\mathrm{O} 5{ }^{\text {iv }}$	1.4951 (11)	$\mathrm{Na} 2-\mathrm{O} 3^{\text {vii }}$	2.3871 (10)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{K} 1-\mathrm{Ol}^{\text {ii }}$	68.95 (3)	O3-P1-O4	105.94 (6)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{K} 1-\mathrm{O} 3^{\text {ii }}$	122.11 (3)	$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 4$	101.64 (6)
$\mathrm{O} 1^{\text {iii }}-\mathrm{K} 1-\mathrm{O} 3^{\mathrm{ii}}$	53.46 (3)	O1-P1-O4	105.69 (6)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{K} 1-\mathrm{Ol}^{\text {iii }}$	119.70 (3)	O5-P2-O5 $5^{\text {iv }}$	117.54 (10)
$\mathrm{Olii}-\mathrm{K} 1-\mathrm{Ol} 1^{\text {iii }}$	171.32 (4)	O5-P2-O4	110.04 (6)
$\mathrm{O} 3 \mathrm{ii}-\mathrm{K} 1-\mathrm{O} 1^{\text {iii }}$	117.99 (3)	O5 $5^{\text {iv }}$-P2-O4	110.66 (6)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{K} 1-\mathrm{O} 3^{\text {i }}$	52.85 (3)	O5-P2-O4 $4^{\text {iv }}$	110.66 (6)
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{K} 1-3^{3}$	121.17 (3)	$\mathrm{O} 5^{\mathrm{iv}}-\mathrm{P} 2-\mathrm{O} 4^{\mathrm{iv}}$	110.04 (6)
$\mathrm{O} 3{ }^{\text {ii- }} \mathrm{K} 1-\mathrm{O}^{\text {i }}$	166.73 (4)	O4-P2-O4iv	95.75 (8)
$\mathrm{Ol}^{\text {iiii- }}$ - $1-\mathrm{O}^{\text {i }}$	67.49 (3)	$\mathrm{O} 5^{*}-\mathrm{Na} 1-\mathrm{O} 3$	156.77 (5)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{K} 1-\mathrm{O} 2^{\text {iii }}$	171.11 (4)	$\mathrm{O} 5^{\text {v }}$ - $\mathrm{Na} 1-\mathrm{O}^{\text {iv }}$	103.17 (3)
$\mathrm{O} 1^{\text {iii- }}$ - $1-\mathrm{O} 22^{\text {iii }}$	119.38 (3)	$\mathrm{O} 3-\mathrm{Na} 1-\mathrm{O} 5^{\text {iv }}$	83.79 (4)
$\mathrm{O} 3 \mathrm{ii}-\mathrm{K} 1-\mathrm{O} 2^{\mathrm{iii}}$	66.53 (3)	$\mathrm{O} 5^{v}-\mathrm{Na} 1-\mathrm{O}^{2 \mathrm{id}}$	105.62 (4)
$\mathrm{O} 1^{\text {iii }}-\mathrm{K} 1-\mathrm{O} 2^{\text {iii }}$	51.95 (3)	$\mathrm{O} 3-\mathrm{Na} 1-\mathrm{O}^{2 \mathrm{ri}}$	79.92 (4)
$\mathrm{O} 3-\mathrm{K} 1-\mathrm{O} 2^{\text {iii }}$	119.27 (3)	$\mathrm{O} 5^{\mathrm{iv}}-\mathrm{Na} 1-\mathrm{O}^{\text {vi }}$	141.23 (5)
$\mathrm{O} 2-\mathrm{K} 1-\mathrm{O} 2$	81.62 (3)	$\mathrm{O5}^{v}-\mathrm{Na} 1-\mathrm{Ol}^{v}$	80.29 (4)
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{K} 1-\mathrm{O} 2$	109.04 (3)	$\mathrm{O} 3-\mathrm{Na}-\mathrm{Ol}^{\text {v }}$	78.96 (4)
O 3 ii- $\mathrm{K} 1-\mathrm{O} 2$	119.82 (3)	$\mathrm{O} 5^{\mathrm{i}}-\mathrm{Na}-\mathrm{Ol}^{v}$	133.13 (5)
$\mathrm{O} 1{ }^{\text {iii- }} \mathrm{K} 1-\mathrm{O} 2$	73.13 (3)	$\mathrm{O} 2{ }^{\text {vi }}-\mathrm{Na} 1-\mathrm{Ol}^{v}$	77.52 (4)
$\mathrm{O} 3-\mathrm{K} 1-\mathrm{O} 2$	72.92 (3)	$\mathrm{O} 5^{v}-\mathrm{Na} 1-\mathrm{O} 4{ }^{\text {ri }}$	86.22 (4)
$\mathrm{O} 22^{\text {iii }} \mathrm{K} 1-\mathrm{O} 2$	92.17 (3)	$\mathrm{O} 3-\mathrm{Na} 1-\mathrm{O}^{\text {vi }}$	114.11 (4)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{K} 1-\mathrm{O} 5^{\text {ii }}$	82.10 (3)	$\mathrm{O} 5^{\mathrm{iv}}-\mathrm{Na} 1-\mathrm{O}^{\text {vi }}$	103.10 (4)
$\mathrm{O} 1^{\text {iii- }}$ K1-O5 $5^{\text {ii }}$	65.69 (3)	$\mathrm{O} 2{ }^{\text {vi }}-\mathrm{Na} 1-\mathrm{O}^{\text {vi }}$	54.20 (3)
$\mathrm{O} 3 \mathrm{ii}-\mathrm{K} 1-\mathrm{O} 5^{\text {ii }}$	70.56 (3)	$\mathrm{Ol}^{v}-\mathrm{Na} 1-\mathrm{O}^{4 \mathrm{i}}$	123.75 (4)
$\mathrm{O} 1^{\text {iii }}-\mathrm{K} 1-\mathrm{O} 5^{\text {ii }}$	114.55 (3)	$\mathrm{O} 2^{\mathrm{vi}}-\mathrm{Na} 2-\mathrm{O} 2^{\text {i }}$	180.0
O3i-K1-O5i	96.19 (3)	$\mathrm{O} 2^{\mathrm{vi}}-\mathrm{Na} 2-\mathrm{Ol}^{\text {ii }}$	96.16 (4)
$\mathrm{O} 2{ }^{\text {iiii }}-\mathrm{K} 1-\mathrm{O} 5^{\text {ii }}$	103.88 (3)	$\mathrm{O} 2-\mathrm{Na} 2-\mathrm{Ol}^{\text {ii }}$	83.85 (4)
$\mathrm{O} 2-\mathrm{K} 1-\mathrm{O} 5{ }^{\text {ii }}$	163.68 (3)	$\mathrm{O} 2{ }^{\text {vi }}-\mathrm{Na} 2-\mathrm{Ol}^{v}$	83.85 (4)
$\mathrm{O} 2{ }^{\text {i }}-\mathrm{K} 1-\mathrm{O} 1$	108.73 (3)	$\mathrm{O} 22^{\text {i }}-\mathrm{Na} 2-\mathrm{Ol}^{\text {v }}$	96.15 (4)
$\mathrm{O1} 1 \mathrm{ii}-\mathrm{K} 1-\mathrm{O} 1$	83.10 (3)	$\mathrm{O1}{ }^{\text {iii }}-\mathrm{Na} 2-\mathrm{Ol}^{v}$	180.000 (1)
$\mathrm{O} 3{ }^{\text {ii- }}$ - $1-\mathrm{O} 1$	72.27 (3)	$\mathrm{O} 22^{\text {ri- }}$ - $\mathrm{Na} 2-\mathrm{O} 3$	83.11 (3)
$\mathrm{O} 1^{\text {iii- }} \mathrm{K} 1-\mathrm{O} 1$	92.86 (3)	$\mathrm{O} 2{ }^{\text {i }}$ - $\mathrm{Na} 2-\mathrm{O} 3$	96.89 (3)
O3i-K1-O1	120.50 (3)	$\mathrm{O} 1{ }^{\text {ii- }} \mathrm{Na} 2-\mathrm{O} 3$	96.09 (4)

supplementary materials

$\mathrm{O} 2{ }^{\text {iiii }} \mathrm{K} 1-\mathrm{O} 1$	70.83 (3)	$\mathrm{O} 1^{\text {v }}-\mathrm{Na} 2-\mathrm{O} 3$	83.91 (4)
$\mathrm{O} 2-\mathrm{K} 1-\mathrm{O} 1$	47.59 (3)	$\mathrm{O} 2{ }^{\text {vi }}-\mathrm{Na} 2-\mathrm{O} 3{ }^{\text {vii }}$	96.89 (3)
$\mathrm{O} 5 \mathrm{ii}-\mathrm{K} 1-\mathrm{O} 1$	141.07 (3)	$\mathrm{O} 2 \mathrm{i}-\mathrm{Na} 2-\mathrm{O} 3{ }^{\text {vii }}$	83.11 (3)
$\mathrm{O} 3-\mathrm{P} 1-\mathrm{O} 2$	114.42 (6)	$\mathrm{O} 1{ }^{\text {ii }}-\mathrm{Na} 2-\mathrm{O} 3^{\text {vii }}$	83.91 (4)
$\mathrm{O} 3-\mathrm{P} 1-\mathrm{O} 1$	114.27 (6)	$\mathrm{O} 1^{v}-\mathrm{Na} 2-\mathrm{O} 3{ }^{\text {vii }}$	96.09 (4)
$\mathrm{O} 2-\mathrm{P} 1-\mathrm{O} 1$	113.31 (6)	$\mathrm{O} 3-\mathrm{Na} 2-\mathrm{O} 3{ }^{\text {vii }}$	180.00 (4)

Symmetry codes: (i) $-x+1 / 2,-y+1 / 2,-z+1$; (ii) $-x,-y,-z+1$; (iii) $-x,-y+1,-z+1$; (iv) $-x, y,-z+1 / 2$; (v) $x+1 / 2, y-1 / 2, z$; (vi) $x, y-1, z$; (vii) $-x+1 / 2$, $-y-1 / 2,-z+1$.

